

Security Architectures & BioAPI

Workshop on Biometrics and Remote E-Authentication Over Open Networks

BioAPI Purpose

ANSI INCITS 358-2002, The BioAPI Specification, defines an open system standard application program interface (API) that allows software applications to communicate with a broad range of biometric technologies in a common way.

- ✓ Simple application interfaces,
- Standard access methods to biometric functions, algorithms, and devices,
- Robust biometric data management and storage,
- Standard methods of managing biometric data and technology types, and
- ✓ Support for biometric verification and identification in distributed computing environments.

IDENTITY ASSURANCE MANAGEMENT"

Location in Architecture

Security Philosophy

- Support strong security not mandate it
 - Support use in a wide variety of environments
 - Allow flexibility in choices of security levels and mechanisms
- Biometric API, not a:
 - Authentication API
 - Crypto API
 - Security API
- Use existing security services wherever possible
 - e.g. PKCS-11, CAPI, ...
- Many security features can be implemented above the API (application level) or below the API (BSP/device level)

Security Features

- Biometric Identification Record (BIR) CBEFF
 - Biometric Data Block may be encrypted
 - Entire BIR may be signed
 - Header field indicates security options
 - NOTE: Implies external key management
- Provision for the return of 'coarsely quantized' (i.e., incremental) scores
 - Protection against hillclimbing attack
- No linkage of personal identifier/data
 - UUID used as index
- Payload feature
 - Biometrically released secrets
- Support for "self-contained devices"
- 2.0 includes time-stamp/expiration date in header (as well as type) & expanded security block

Architectural Options

- Combined BSP/CSP
 - Biometric functions accessed via BioAPI
 - Cryptographic functions accessed via crypto API
 - e.g., key exchange
 - Ability for BSP to sign/encrypt BIRs

Architectural Options (cont'd)

- BSP may implement Match-on-Card
- BSP functionality may be implemented in hardware device
 - Peripheral, token, smartcard
 - Device may be certified
 - e.g., FIPS 140, Common Criteria
- BSP component may be signed
- BSP may implement
 - Anti-spoofing countermeasures
 - Including liveness detection
 - BSP-controlled BIR database protection
 - DB may be a smartcard
 - Device interface protection

Architectural Options (cont'd)

- Application responsible for:
 - Client/server communications
 - BIP alternative
 - Account database protection
 - End-to-end data security to prevent
 - man in the middle attacks
 - data insertion attacks
 - replay attacks
 - May create debugger hostile environment

Catherine J. Tilton SAFLINK Corp. 1875 Campus Commons Dr, Suite 301 Reston, VA 20191

ctilton@saflink.com

703-547-0404 Cell 703-472-5546 Fax 703-547-0399

